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Abstract
This report documents how active structural control was used to significantly 
enhance the metal removal rate of a milling machine. An active structural control 
system integrates actuators, sensors, a control law and a processor into a structure 
for the purpose of improving the dynamic characteristics of the structure. Sensors 
measure motion, and the control law, implemented in the processor, relates this 
motion to actuator forces. Closed-loop dynamics can be enhanced by proper con-
trol law design.
Actuators and sensors were imbedded within a milling machine for the purpose of 
modifying dynamics in such a way that mechanical energy, produced during cut-
ting, was absorbed. This limited the on-set of instabilities and allowed for greater 
depths of cut. Up to an order of magnitude improvement in metal removal rate was 
achieved using this system.
Although demonstrations were very successful, the development of an industrial 
prototype awaits improvements in the technology. In particular, simpler system 
designs that assure controllability and observability and control algorithms that 
allow for adaptability need to be developed. 
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Introduction

The following is a discussion of the 
design, analysis, and testing performed 
to demonstrate the value of using active 
vibration control to enhance the pro-
ductive capacity of a milling machine. 

Maximum Metal Removal Rate 
(MMRR) is a quantitative measure of 
the productive capacity of a machine 
tool. The MMRR is limited by several 
factors including the onset of machin-
ing instabilities that are a function of 
the vibratory modes of both the 
machine and the tool (see Merritt, 
1965, Tlusty and Ismail, 1983, and Shi 
and Tobias, 1984). 

By altering the dynamic characteristics 
of these modes, instabilities could be 
mitigated and MMRR improved. Alter-
ation could be achieved by physically 
redesigning or modifying the structure 
of the machine; however, an alternative 
approach is to use an active control sys-
tem to alter the system dynamics. In an 
active control system, actuators, sen-
sors, computers and software replace 
mechanical components to provide the 
desired dynamic response characteris-
tics.

Examples of the use of active systems 
to alter dynamics during machining are 
relatively few, see Comstock, Tse, and 
Lemon, 1969, Sadek and Tobias, 1973, 
Hong-Yeon Hwang, Jun-Ho Oh, and 
Kwang-Joon Kim, 1988, and Shiraishi, 
Yamanaka, and Fujita, 1990, General 
Dynamics Team 1998, and Redmond, 
Barney, and Smith, 1999. In general, 
most of these papers address turning, 
not milling.

Milling machines are designed for a set 
of tools with diameters similar to the 
diameter of the spindle. When a tool 
has a diameter that is much less than 
the diameter of the spindle, a mechani-
cal impedance mismatch occurs 
between the tool and the spindle, and 
mechanical energy can be trapped 
within the tool (i.e. a tool mode). Dur-
ing cutting, these tool modes can 
become unstable. Larger diameter tools 
usually do not experience this phenom-
enon due to the power limitations of the 
machine. Other researchers have devel-
oped methods to avoid these instabili-
ties by varying spindle speed (see 
Jemielniak and Widota, 1984,Altintas 
and Chan, 1992, and CRAC, 1992). 
However, this often requires moving to 
higher or lower spindle speeds where 
MMRR is decreased (i.e. lower spindle 
speeds) or where tool wear is increased 
(i.e. high spindle speeds).

Actively changing the dynamics of a 
machine can enhance MMRR without 
the need for changing spindle speeds. 
The following is a discussion of an 
alternate approach - the development of 
hardware and software constructed to 
enhance the MMRR of a machine tool 
using an active structural control sys-
tem.

 Hardware Design

An illustration of the hardware 
designed and constructed to demon-
strate the utility of active control is 
shown in Figure 1. Much of this hard-
ware was constructed and assembled at 
the Ingersoll Milling Machine Com-
pany (Rockford IL).
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As shown in Figure 1, vibration is 
sensed at the root of a rotating tool by 
strain gages that are arranged in half 
bridge configurations to sense bending 
in two lateral directions. Excitation 
voltages were supplied to the half 
bridges using commercial electronics. 
Power is supplied to these electronics 
via magnetic coupling between rotating 
and stationary wires. 

A telemetry system is used to transmit 
strain data from the rotating spindle to 
stationary receivers. Both the rotating 
and stationary electronics were fabri-
cated by the Wireless Data Corporation 
(see Wireless Data).

Strain is measured in a coordinate sys-
tem that rotates with the shaft, 

, however, actuation occurs in 
a coordinate system that is stationary 
with the machine, . There-
fore, the strain data must be translated 
from rotating to stationary coordinates. 
To do this, the angular position of the 
spindle is measured using a decoder. 
Decoder and strain-gage-bridge volt-
ages are fed into anti-aliasing filters, 
analog to digital converters (A/D), and 
a processor for the computation of this 
transformation. The anti-aliasing fil-
ters, the A/Ds, and the processor are 
part of a component called a controller.

A controller is a hardware component 
with the ability to capture voltage sig-
nals, combine them in accordance with 
a defined mathematical relationship, 
and output the result as another set of 
voltage signals. Intelligent Automation 
Inc. (Rockville, MD) designed and fab-
ricated the controller discussed in this 
paper. 

For our application, the control law 
operates on stationary strain signals 
and feeds back activation signals to the 
actuators. Control laws were designed 
to absorb energy from the rotating tool 
thereby, reducing entrapped energy. 
This absorption of energy increases the 
stability of the cutting process and 
improves MMRR. The control law is 
defined by programmable logic.

As shown in Figure 1, the controller 
produces four voltage signals that drive 
a set of four power amplifiers. These 
power amplifiers drive stacks of elec-
trostrictive material (PMN) embedded 
within the housing of the machine. 
These stacks (produced by Lockheed 
Martin Corporation and integrated into 
the housing by Active Signal Inc.) pro-
duce force against a non-rotating por-
tion of the machine called the cartridge. 
The spindle moves with the center line 
of the cartridge and floats on a hydro-
static bearing. Thus, forces on the car-
tridge produce motions in the tool. 
Motions corresponding to tool bending 
can be sensed by the strain gages and 
fed back into the control system.

Hardware, consisting of the spindle, the 
tool holder, the cartridge, the actuators, 
part of the telemetry system, and much 
of the surrounding housing was given 
the special name - the Smart Spindle 
Unit (SSU). A photograph of the SSU 
is shown in Figure 2. Separate from the 
SSU are the power amplifiers, the con-
troller, and the telemetry package 
receiver.

x y z, ,( )

X Y Z, ,( )
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Figure 2. Modified Tool and Smart Spindle Unit
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Characterization

Without the benefit of previous 
design data, the SSU design relied 
heavily on the use of numerical anal-
ysis (see Dohner et. al., 1997). 
Although this allowed for enough 
insight to complete an initial design, 
a full characterization of dynamics 
was required upon fabrication.

Initial experimental analysis of the 
SSU showed that system dynamics 
were not controllable or observable 
(see Kwakernaak and Sivan, 1972 for 
an explanation of controllability and 
observability). Frequency Response 
Functions (FRFs) were measured 
between voltage inputs to the power 
amplifiers and tool strain responses 
in stationary coordinates. Initial mea-
surements were made with the spin-
dle at rest (0 rpm). Figure 3, is a plot 

of the Maximum Singular Values 
(MSVs) of these FRFs. The MSVs 
give a bound of the FRF response of 
the system. From the MSVs the 
modes of the system can be identi-
fied. The first “tool” mode occurred 
at about 800Hz, however, as shown 
in this figure, it participated little in 
the response. Thus, a state space 
model derived from the measured 
FRFs would not be controllable or 
observable.

The reason the system was neither 
controllable nor observable was 
because of an anti-resonance in the 
FRFs between the actuators and 
strain sensors. The frequency of the 
anti-resonance occurred at virtually 
the same frequency as the fundamen-
tal mode of the tool. The anti-reso-
nance was due to modal cancellation 
between rigid-body modes of the car-
tridge/spindle system.
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Figure 3. Maximum Singular Value of FRFs Showing the Location of the Tool Mode
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Controllability and observability 
could have been achieved by shifting 
the resonant frequencies of the car-
tridge and spindle to frequencies 
above the fundamental frequency of 
the tool; however, to do this would 
have required a complete redesign of 
the SSU, and such modifications 
were beyond available budget and 
time. 

Therefore, two options were avail-
able:

option 1) fabricate a longer more 
flexible tool with a 
lower fundamental fre-
quency, or 

option 2) modify the existing tool 
to lower its fundamental 
frequency. 

Due to budget constraints, the second 
option was chosen. A mass was 
added close to the end of the existing 
tool to move the fundamental tool 
mode away from any rigid-body anti-
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Figure 5. Controller Function in Block Diagram Form
resonance. Subsequent FRFs are 
shown in Figure 3. As shown, the 
tool mode (now clearly visible) was 
shifted from 800 Hz down to 453 Hz. 
The resulting realization (state space 
model) of the modified system was 
both controllable and observable.

Additional measurements were per-
formed to determine how FRFs var-
ied with rotation. In Figure 4 the 
maximum singular value of the actu-
ator to strain FRFs for both rotating 
(3000 RPM) and stationary condi-
tions are shown. The main difference 
between these plots is the presence of 
harmonics at multiples of the rota-
tional speed of the spindle. These 
harmonics are artifacts due to bearing 
inputs, out-of-roundness, and balanc-
ing that could have been reduced by 
using more ensemble averages when 
estimating the FRFs. 

More importantly, Figure 4 shows 
that the dynamics of the fundamental 

mode appears to be invariant with 
respect to rotation speed. Therefore, 
the same control law can be used 
regardless of the spindle rotation 
speed.

Control Design

Control design was performed as a 
two step process.

step 1) The production of a 
reduced order realization 
of dynamics, and

step 2) The design of a robust con-
troller. 

Figure 5 shows controller logic. 
Three voltage signals are fed into the 
controller - two voltage signals from 
the receiver and a voltage signal from 
the decoder. These signals are passed 
through anti-aliasing filters and are 
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then sampled. The result is a numeri-
cal data train representing tool strain, 
in rotating coordinates, , and 
spindle location. This data is com-
bined to calculate tool strain in the 
stationary coordinate system 

 (as discussed above). 

At sample time , stationary strain 
data is given in vector form by 

where  and  is sampled, 

stationary, strain data in the  and  
planes. This vector is used by the 
control law to compute the outputs of 
the controller. The control law takes 
the form

(1.a)

(1.b)

where  is the controller 

state matrix,  is the con-

troller input matrix,  is the 

controller output matrix, and  is the 
number of states in the controller (see 
Kwakernaak and Sivan 1972). For 
this application, the control law was 
designed to absorb energy from the 
system; consequently, closed-loop 
tool dynamics are more heavily 
damped than open-loop tool dynam-
ics. The state, input and output matri-
ces are chosen in such a way that this 
form of energy absorption occurs.

 Using the control law and the data 

train, , the out-
put vector, 

x y z, ,( )

X Y Z, ,( )

k

y k( )
εX k( )

εY k( )
=

εX k( ) εY k( )

X Y

xc k 1+( ) Acxc k( ) Bcy k( )+=

u k( ) Ccxc k( )=

Ac ℜ nxn∈

Bc ℜ nx2∈
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n

y k( ) y k 1–( ) y k 2–( )…,,
              

Figure 6. Frequency Response Function, Magnitude and Phase, With and 
Without Control
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, 

can be calculated. The output vector 
data train is converted into two ana-
log voltage signals by a set of digital 
to analog converters (D/A). Because 
of the cruciform configuration of the 
SSU, actuators on either side of the 
cartridge were assumed to move the 
same amount; therefore, voltage sig-
nals into the power amplifiers can be 
formed by splitting each D/A output 
voltage and changing the sign on one 
of the signals.

In order to choose a controller state, 
input, and output matrix that will 
damp tool motion, a mathematical 

realization of dynamics from  to 

 must be produced. This realiza-
tion is often referred to as the plant. 
A variety of algorithms can be used 
to produce a plant realization from 
measured frequency response func-

tions. The algorithm used in this 
effort was the Eigensystem Realiza-
tion Algorithm with Direct Correla-
tions, ERA/DC, (see Juang, 1994). 
Neglecting any direct feed through 
effects, this algorithm produces a 
realization of the form

(2.a)

(2.b)

where  is the plant state 

matrix,  is the plant input 

matrix, and  is the plant 

output matrix. Again,  is the num-
ber of states. 

The control law, equation 1a,b, is a 

mathematical relationship from  

to . The plant, equation 2a,b, is 
a mathematical relationship from 

 to . Initially, a Linear Qua-
dratic Gaussian (LQG) approach (see 

u k( )
u1 k( )

u2 k( )
=

u k( )

y k( )

x k 1+( ) Ax k( ) Bu k( )+=

y k( ) Cx k( )=

A ℜ nxn∈

B ℜ nx2∈

C ℜ 2xn∈
n

y k( )

u k( )

u k( ) y k( )
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Kawakernak and Sivan) was used to 
determine the state, input and output 
matrices of the control law. As with 
most uses of LQG, the weighting 
matrices used to define performance 
were manipulated to shape the loop 
until a sufficient balance between per-
formance and robustness was achieved. 
Surprisingly, in doing this, it was found 
that LQG produced high levels of both 
robustness and performance. This 
occurred even for low order plant real-
izations .

After examination of the control law 
and plant, a better understanding of 
control dynamics was developed. Fig-
ure 6 shows a Bode plot of the plant 
with and without control. Notice that 
there is one dominant mode in this sys-
tem at 450Hz. This is the tool mode. 
This tool mode has a peak response 
that is almost an order of magnitude 
greater than the response of any other 
mode in the system. Therefore, the 
plant can be approximated as a second 
order system cascaded with all pass 
dynamics (see Oppenheim, A.V., Scha-
fer, R.W., 1975). Considering symme-
try and neglecting cross coupling, the 
plant can be approximated by 

 

where , 

 and  is the Laplace trans-
form variable.

The LQG approach produced control-
lers that can be approximated by 

where . 

Notice that this is a Positive Real (PR) 
control law even through the plant was 
not PR. Nevertheless, because it looks 
unimodal in any one direction, the PR 
control law was adequate to produce 
high levels of performance with suffi-
cient levels of robustness.

To better understand this, notice that 
for  and moderate values of  

and  the loop gain, , is 

greater than 1.0 only for frequencies 
near to . At all other frequencies the 
closed loop system is gain stabilized. 
This has a significant influence on the 
Nyquist diagram of the loop gain. Fig-
ure 7 shows the Nyquist diagram of the 
loop gain for a typical control law. The 
Nyquist diagram contains a single lobe 
that occurs near the fundamental fre-
quency of the tool. The rotation and 
size of this lobe is controlled by the 
parameters , , and . LQG 

selects these parameters such that the 
lobe is always deep in the right hand 
plane of the Nyquist diagram. This 
gives high loop gains and therefore 
good performance while also maintain-
ing robustness (over 90 degrees of 
phase margin at high gain margins). 
Thus, for this plant, LQG was able to 
produce a robust, high performance, 
low order control law. The final control 
law contained only four states.

Results

Chatter instabilities occur during cut-
ting due to dynamic feedback between 

n 4=( )
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tool inserts. A cutting tool can have a 
number of inserts. As an insert cuts 
through metal it lays down a pattern, 
and this pattern affects the cut of the 
next insert on the tool. This interaction 
creates a dynamic feedback path 
between successive cuts, and, as in 
many feedback systems, can lead to 
instability. During cutting, energy is 
pumped into well coupled modes. If the 
pattern on the part is great enough that 
energy gain is not balanced by energy 
loss, energy storage will grow; thereby, 
producing the dynamic instability 
known as regenerative chatter.

Cutting instabilities can pump enough 
vibrational energy into the tool to eject 
the insert from the part. At ejection, the 
forces on the tool are relieved and the 
insert bounces back into the metal. This 
ejection and reimmersion creates a 
non-linear dynamic limit cycle process 
that results in severe vibration in the 
machine and poor surface finish. 

Figure 8a,b show the response of the 
strain gages for a tool in chatter and a 
tool not in chatter. Notice that chatter 
can produce over an order of magni-
tude change in the dynamic response of 
the tool for a 0.01 mm depth of cut at 
3600 rpm spindle speed.

Figure 9 is a cartoon of the stability 
limits of a hypothetical machine and 
tool. The area below the curve is stable 
and the area above the curve is unstable 
(unstable is hatched). Notice, that at 
low spindle speeds, large depths of cut 
can be taken; however, metal removal 
rate, MRR, is low due to low rotational 
speeds. At higher rotational speed, lob-
ing exists. This lobing represents 
regions of stability. Operating within 
these lobes will produce high MRRs; 
however, for many poorly thermally 
conducting materials, this will also 
result in high tool wear caused by ele-
vated temperatures. Therefore, most 
machine tools operate at intermediate 
spindle speeds between spindle speeds 
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Figure 10. Enhancement in Stability Due to Active Control
 and . For the machine dis-

cussed in this paper,  

and . 

The stability limits of the machine 
shown in Figure 2 were determined for 
control on and control off. Per ANSI/
ASME standards, chip loading for full 
immersion cutting was held to 0.1mm/
insert. Figure 10 shows the change in 
machine stability due to control. As 
shown, an order of magnitude increase 
in the maximum stable depth of cut 
occurred. Active vibration control sig-
nificantly increased the cutting perfor-
mance of this machine tool. 

Other cutting tests (quarter and half 
immersion tests) demonstrated 
improved MMRR with lower levels of 
performance. For these tests, the maxi-
mum stable depth of cut increased by 
factors of 4 to 5.

Conclusions

This project demonstrated that active 
structural control can be used to 
increase the MMRR of a milling 
machine by more than an order of mag-
nitude. Although these results are very 
promising, there are still practical limi-
tations to this technology. In particular, 
better methods of design, and control 
are required. 

The design of machines that can prop-
erly leverage the use of active control 
is an evolving area of study. These 
machines must be designed to allow for 
the full observability and controllabil-
ity of the vibration modes of interest. 
For this effort, the tool was altered to 
overcome this problem, however, in a 

nmin nmax

nmin 700rpm≈

nmax 4000rpm≈
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more mature system, this type of alter-
ation would not be acceptable. 

Because actuation and sensing 
occurred in two separate coordinate 
systems, one rotating and the other sta-
tionary, the control system was need-
lessly complex. This complex control 
system, necessary in a proof of concept 
experiment could be significantly sim-
plified in a production system; such as 
its packaging in a compact tool holder 
configuration (see General Dynamics, 
1998).

Active control changes the dynamics of 
the machine such that chatter instabili-
ties occur at much higher depths of cut. 
At present, this requires the interven-
tion of an operator. However, theoreti-
cally, the machine could be given 
sufficient intelligence to make these 
changes on its own.
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